正六角形の大事な性質・解き方〜対称性・平行・回転・異なる視点から眺める・相似形の面積比・辺の比を2回かける・図形を異なる視点で見る・「自分の都合の良い角度」から見る・問題4(2)解法B〜|武蔵中2021年算数4・過去問・中学受験

前回は「図形問題・正六角形の考え方〜少しずつ面積を求める・分かっていることを図形に描く・並んだ点の長さの比を整理・対称性・対角線・連比と最小公倍数・相似形の面積比・問題4(2)解法A〜」の話でした。

目次

問題4(再掲載)

New Educational Voyage
正六角形の問題(新教育紀行)
正六角形の問題(新教育紀行)

正六角形の大事な性質:対称性・平行

正六角形の問題(新教育紀行)

今回は、(2)を少し前回と少し異なる視点で考えてみましょう。

対称軸と中心を考え、△IJLの面積から△KLJを求めるところまで同一です。

この図形を見ていて、平行となる線を色々と探してみましょう。

平行な線の組み合わせはたくさんありますが、ちょっと気付きにくい組み合わせがあります。

正六角形の性質:平行(新教育紀行)

それは、「BDとAEが平行」です。

相似形の面積比:辺の比を2回かける

正六角形の性質:平行(新教育紀行)

平行であることがわかれば、△KLJと△IDJが相似であることがすぐに分かります。

相似三角形の面積比は、辺の比を2回かける(2乗)と計算できます。

IP : PK : KJ : JHを求めて、JK : KI =1 : 9から、△KLJの面積が求まります。

「相似形の比=辺の比を2回かける(2乗)」は、しっかり理由を理解しておきましょう。

図形の比と面積比(新教育紀行)

二つの図形が相似である時、

新教育紀行)
図形の比と面積比(新教育紀行)

相似である意味を考えれば、面積比も理解できます。

面積比に関する話を、上記リンクでご紹介しています。

図形を異なる視点で見る:「自分の都合の良い角度」から見る

正六角形の性質:平行(新教育紀行)

BDとAEが平行であることは、「言われてみれば当然」かもしれません。

男子小学生

言われたら分かるけど、
なかなか気づかないかも・・・

こういうことには、意外と気づかないこともあります。

この図形全体を、右回りにクルッと30°回転してみましょう。

男子小学生

あっ、
平行だ!

回転したら、一目で分かります。

女子小学生

確かにそうだけど、
不思議ね・・・

「BDとAEが平行」というよりも「四角形BDEAは長方形」という事実に気づきます。

これは、見れば一目瞭然です。

頭の中で回転させられれば良いですが、自分で「回転した図を描いてみる」のも良いでしょう。

試験場で試験用紙を回転させても良いでしょう。

図形問題は「自分の都合の良い角度」から見てみることも大事です。

「異なる視点から眺める」ことは非常に本質的で、大変効果的な考え方です。

「違う視点から考える」ことは様々な問題で、ぜひ考えてみましょう。

すると、算数(数学)のセンスが磨かれます。

この問題は、いくつかの視点が見えて色々な切り口が学べます。

これで円や正〜角形の図形問題は、解けるようになるでしょう。

次回は下記リンクです。

新教育紀行

この記事が気に入ったら
フォローしてね!

目次